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ABSTRACT

We study the Euclidean Green’s functions of the ‘¢ Hooft vortex
operator, primarily for Abelian gauge theories. The operator is
written in terms of elementary fields, with emphasis on a form in
which it appears as the exponential of a surface integral. We
explore the requirement that the Green’s functions depend only on the
boundary of this surface. The Dirac veto problem appears in a new

“"solvable model” of a Dirac

guise. We present a two dimeﬂsional
string, which suggests'a new solution of the veto problem. The
renormalization of the Green’s functions of the Abelian Wilson loop
and Abelian vortex operator 1s studied with the aid of the operator
product expansion. In each case, an overall multiplication of the
operator makes all Green’s functions finite; a surprising cancella-
tion of divergences occurs with the vortex operator. We present a
brief discussion of the relation between the nature of the vacuum and
the cluster properties of éhe Green’s functions of the Wilson and
vortex operators, for a general gauge theory. The surface-like élus~

ter property of the vortex operator in an Abelian Higgs theory is

explored in more detall.
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Introduction

Mandelstaml”z and “t HooftB”é have shown that there is an
electric/magnetic duality in the possible phases of non-Abelian gauge
theories. A confining theory, for example, is dual to a coumpletely
broken Higgs theory. In the former, color=electric scurces are con=-
fined, while in the latter, color-magnetic sources are confined.

Just as a confining phase is characterized by an area law for the
Wilson loop, a complete Higgs phase can be characterized by an area

3
law for a dual operator, the vortex operator .

Strong restrictions on the possible phases of gauge theories
have been obtained from this approachéa These results are essen-
t1ally kinematic in nature: no one has found a way to rewrite a non-
Abelian gauge theory as a simple dual field theory, and the idea of
duality has not helped to answer the dynamical question of which
phase 1s actually realized in any given non-Abelian gauge theory.
This 1is in contrast to the case of U(l) and ZN gauge and generalized
gauge theories on a lattice, which can be transformed into dual gauge
theorieség this duality 1s often a guide to the phase structure of a

theory.

The results that have been obtained concerning the vortex opera-
tor are also kinematic, depending on its topological quantum number
but not on its detailed form. In this paper we take a closer lock at
the details of the vortex operator. We deal primarily with an
Abelian theory, leaving the coumplications of the nonwAbelian theory
for the future. In the next section we introduce the idea of the

vortex operator, and express it in terms of elementary fields.



A problem arises which is essentially the veto problem from Dirac
monopole theory. We study a two dimensional model of a Dirac string;

the results suggest a new solution to the Dirac veto problem.

In section 3 we discuss the systematic expansion for the Green’s
functions of the vortex operator. We emphasize a form for the vortex
operator in which it appears as the exponential of a surface
integral, and we explore the condition that the Green’s functions
depend only on the boundary of the surface. We show how the Green’s
functions are eiéressed neatly in terms of Wu and Yang’s idea of
"sections'. In section 4 we study the renormalization of two kinds
of Abelian "looplike' operators, the Wilson loop and the vortex
operatofe In each case the possible divergences are easily deter-
mined with the aid of the opevator product expansion, and for both
operators only an overall multiplicative renormalization is needed.
In the case of the vortex operator this result comes about through
cancellation of a field renormalization divergence against a compo-

slte operator divergences

In section 5 we discuss the relation between the Green’s func-
tions of the Wilson and vortex operators and the nature of the
vacuum. We emphasize the cluster properties of Green’s functions
rather than the vacuum expectation value. We then show that a vortex
operator in a massive theory always has surfacgmlike clustering, and
we see how this would appear from a graphical expansion. Secﬁion_é

presents a summary and discussion of the results.



2. Vortex Operators

The vortex operator, like the Wilson loop, is associated with a
closed curve in spacetime. Let us consider a general "local loop-
like" operator L associated with a closed curve € lying in the R3
plane t&t09 and let us consider 1ts commutation relations with other
operators at time toe By definition, L commutes with observable

; . . ] -
{that is, gauge invariant) local operators associated with a point X

not on C. This implies that for any gauge dependent fleld @(23
-> -
Lo (x) = 2(x)H5L (2.1)

- : - ->
where @(x)g is § after a gauge transformation g(x) and g(x) is sonme
gauge transformation associated with the operator L. For instance,
in the usual gauges (axial, covariant, Coulomb), the gauge transfor~

mation associated with the Wilson loop 1s simply 1 everywhere.

It is important that g(in is not defined in all of space, RB»
but only in R3 = Co R3 = £ is multiply connected: curves ave dis-
tinguished by thelr winding number around €. As a result there can
be a non=trivial effect, a topology, associated with g(?)e As??
describes a path around C, g(?) describes a path through the gauge
group. If the gauge group is simply connected, there is nothing
interesting about this, but if it is multiply gonnected the path may
lie in a non-=trivial element offﬁl(G)» Homotopy groups Glg are dis-
cussed in reference 8. For different paths of the same winding
nunber, continulty requires that this element be the same. Since
paths of winding number other than one can be generated as a product

of paths of winding number one (traversed backwards for negative

winding number) the homotopy class associated with winding number one



determines that for any other path. The class associated with L is
gauge invariant: since any gauge transformation can be continuously
deformed into one which is unity in an arbitrarily large volume
(including the whole of L) the gauge transformed g(ﬁH can be con-
tinuously deforwed into its original value; homotopic invariants are
therefore unchanged. Thus, there is a gauge invariant quantum

number, a homotopy class, associated with any looplike operator.

Operators for which this class is not the trivial one are called
vortex operators. When such an operator acts on the vacuum of a com-
pletely proken Higgs theory, it produces the twisted boundary condi-
tions associated with the Nielsen-Olesen Voriexga The operator

creates this vortex state; hence the name.

In an Abelian gauge theory, a vortex operator creates a loop of
magnetic flux just as the Wilson operator creates a loop of electric
flux. In the dual (Abelian) gauge theories mentioned earlier, the
Wilson loops of one theory are mapped into vortex operators of the
other. In the long distance, large coupling, limit of non-Abelian
{as well as Abelian) gauge theories, the vacuum approaches an eigen-
state of a simple vortex operator. Thus, they are attractive opera=
tors to consider. If one tries instead to consider duality in terms
of pointlike, monopole creation, operators, one finds that there is
no associated topological quantum number: EE(G) is trivial for any
Lie pauge group G. -In this, there is an interesting analogy between
electric and magnetic quantities: the pointlike operators in non-
Abelian theories (gauge fields or monopclés) have no g;uge or topo=-

logical invariance, while the looplike operators (Wilson loops or

vortices) do.



The quantum number associated with a vortex can be characterized
in a different way. Counsider the path described by g(?) asxﬁ winds
once around C. This path in G defines in a natural way
(g*ngagwlgz) a path in the simply connected covering group G. By a
well<known connection between fll(G) and the center of E, when :?
returns to its starting position §(§3 need not return to its origi-
nal value but is multiplied by an element ZL of the center of G.
Because g(?) is 'single valued, ZL in G must be mapped into 1 in G by
the usual homomorphism. Vortex operators can thus be considered to
have quantum numbers in Z(E)/Z(G)9 the quotient of the centers of the
two groups, which is isomorphic to f%‘@)@ It also follows that if ¢

=1, where 2z is Z_ in

is a representation single valued in G, =z L L

rL

representation r.

One can show from equation 2.1 that

w{(C,C")

L(CHW_(C7) =W _(CL(C) (2 ) (2.2)

where w(C,C’) is the winding number of C’ tﬁrough C, and WS(C’) is
the Wilson loop in representation s associated with curve C’ (assumed
here to lie in the tgtg hyperplane). Thus, although L{C) commutes
with every local gauge invariant not on £, if it is a vortex operator
it will not commute with certain Wilson loops linking C. Equation
2.2 characterizes completely the topological character of the vortex
operator; it is only ZL (or 2.1, for all s), not g(;?) that can be’
defined in a pauge invariant way. Note that equation 2.2 is entirely
dual between L(C) and W(C’); one cannot say that one is a topological
operator and the other is not, until one tries to discuss gauge

dependent quantities as in equation Z.1. The one genuine asyumetry



is that the Hamiltonian is relatively simple in terms of the Wilson
loops {or the related vector potentials), but does not appear to have
a simple form in terms of vortex operators,; this asyumetry may or may

not be permanent.

We illustrate these ideas for a U{l) theory. The covering group
of U(l) is RI; a general elemené of Rl is a real number y. In the
representation of charge e, y becomes exp(iey). A general looplike
operator L{C) is then associated, through equation 2.1, with a func~
tion y(?), the Rl version of E(;?)s Like g(?), y(?) need not be
single-valued, but exp{iey(;?)} must be 1f fields of charge e are
presentg.becausg g(§3 is single~valued. It follows that when‘i
winds once around Q; y(g) must change by Zﬁ’p/emin9 where gmin is the
unit of charge and p is any integer. Vortex operators are thus

characterized by an integer p. Equation 2.2 is now

l(C)Wq(C") = WQ(C’)L(C)exp{quW(CaC’ Ve .} (2.3)

where wq is the Wilson loop
kq(c y = exp{imﬁcadxiéi(x)} (2.4)
For those fields actually present, q is a multiple of € in and the

phase factor in equation 2.3 is 1.

Differentiating equation 2.3 with respect to q and setting g=0,

and then using Stokes®s theorem to relate the line integral of X to

the surface integral of the magnetic fie1d°§9

- > 2mi P B e
L(C)B, () = {B, (x) + ﬁcdyié (X =y )}L(C) (2.5)

min

Although equation 2.5 refers to a conmmutator directly on C, it fol-



lows from equation 2.3 and is therefore true for any vortex operator
independent of its short distance details. This is the source of the
statement that vortex operators create a loop of magnetic flux; the
dual equation, replacing L by Weg E? by E? and Zﬁp/emin by e 1is also
true. There 1s no corresponding local version of equation 2.4 for a
non~Abelian theory. Equation 2.2 might then be taken as a definition

of non-Abelian magnetic flux3s

An operator satisfying equation 2.3 is

ip o3 822> . >
vp(c) = exp{ziigja x ?;E(x)éégo(x)} (2:6)

where @gPs and z are cylindrical coordinates, é is a unit vector in
the & direction, and jO is the charge density. We take the AOﬁO
gauge for convenience, but V(C) is gauge invariant and so will be its
commutators, such as 2.1, with gauge invariant operators. From the

canonical commutators

> -3 3> >
iﬁi(X)gAj(y)J = 16135 (X=y) (2.7a)
SRCSRICATEE me’é63(§>s?>¢<?> (2.7b)
one finds
=ip8e
V (C(F) = expl——21¢(G)V_(C) (2.83)
P emin : P .

vpm)ai(?) - A () + Lexp{(~1p8/e ;)3 exp{ipd/e ; IV (C) (2-8b)

> ->
VQ(C)Ei(X) = Ei(x)vp(c) _ (2.8¢)

This is the Abelian form of equation 2.1. The curve C is here the



-s%
z=axis; g(;?) is exp[~1ip8]. A vortex operator for any C and any g(x)

can be constructed in the same way.

The coordinate 6 must have a discontinuity of 2m on a semi=-
infinite surface S bounded by the z~axis (such as the half-plane
8=0=2n). The exponent in the definition of VP(C) is therefore
discontinuous but the operator itself has no discootinuity on the
surface, as can be seen from its commutators. These are completely
independent of Qﬁere we choose to define the discontinuity of 6.

Using

N

89 = 9 + disc(8)
VP(C) can be rewritten

1 3. :
v (€)= expzE-(fd x (3o()=3,E, (¥))0 + 2nfdn. B 1} (2.9

min
jOG?)wéiEi(?d does not vanish as an operator in the Ay=0 gauge, but
by Gauss’s law it vanishes in gauge invariant Green’s functions. The
gauge invariant Green’s functions are therefore the same for VP(C) as

for

s Zﬁi
Vp (C) = exp{?fj‘sdniﬁi} (2910)
min

1f one evaluates the commutator of Vpg(C) with
g(?)g%*(?)[éi@ie?&i(;?)]%(?)ﬁ it does not appear to vanish on §; it
must, however, because {VP(C)g%(§5]sO on S and @ is gauge invariant.
The préblem is thaﬁ ¥°(C)y is too singular for canonical commutators
;o be correct; if one evaluates the Green’s functions of Vp’(C)@(x)
using the methods of the next section, one finds that they have no

equal time discontinuity on 8. Vp’(C) is a8 more convenient form of
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the operator when one is discussing Green®s functions.

One might wonder whether the commutators 2.8 are really correct
in field theory, even for the form 2.9, or whether some anomaly will
develop due to the discontinuity of 8. V and V° are poorly defined
because the discontinuity of 8 is sharp; if we define them by smear-
ing the discontinuity and taking the swearing to zero, does the lim=-
iting operator satisfy 2.87 A simple example shows this to be a
valid worry. Consider a theory with fermions, ¥, in two spacetime
dimensions (they may even be free fermions), and consider the opera=-

tor

a(x) = exp{jfldﬂl Zﬁi;(xe)yo%(x”)} (2.11)

where x is the spacetime point (xogxl) and the integral runs along

the equal time path from (xogxl) to (xogn)e From the commutator

[F) V) -2 18k my ) = =B (y=2)#(y) (2.12)

we find, by the same canonical manipulations that lead from 2.-7b to
2.8a, that [Q(x),¥(z)]=0 at equal times, so that Q(x) would be a c-

number. On the other hand, from boson equivalence109

Q(x) = exp{Ji)dxgl nggi31¢(x“)}
1

= exp{2\mig(x)}

- conste?(x)(l+¥5)%(x) (2.13)

1f the fermions are massive, the leading piece of @(1+Y5)% is in fact

a c-number, but if they are massless, ;K1+Y5)% nas no c-number pilece
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and [Q,%#] is not identically zero.

One may also see this in a different way by evaluating
G(x,y,2) = < Q(x) ¥(y) ¥(z) > (2.14)

for free fermions. G(x,y,2z) is poorly defined because the support in
the exponent in equation 2.11 is too singular. If one suears the
support {(necessarily into the time direction) over a small distance J
{call the resul?ing operator %A and the Green’s function QA), we can
calculate GA(x;ygz) directly. As A goes to zero, for free massive
fermions QA(xgy,z) approaches < ;(y) #(z) > times a constant, while

for massless fermions it approaches
< () (14Y )4 (x) F(y) ¥#(z) >

tines a constant.

This is not a serious problem. By regulating L in a sligntly
more conplicated way, one may obtain the desired limit. Consider the

operator
F(x) (14 F(x)Z, (x)
wheie
z, () = exp{ifa’z £, (2)F(utz)¥(x+2) ) (2.15)

and §A<20921) is a family of functions with support in jz| < A. If

£, is defined so that as A—>0,

A

jﬁzz fA(z)/lzlz - (2.16a)

1a’z £, (2)/12] = 0 (2.16b)



12

then as Aa%o,'§(1+y5)%:§A approaches a c-number even for massless
fermions. 1f one then defines a regulated £(x) as Q}(x)ég(x)g its
limit will be a c-number. Equations 2.16 are correct for free fer-
mions or with a super-renormalizeable interaction; as one might
expect, with @ Thirring interaction there would have to be different

powers of z in the integrands.

It is interesting to repeat some of the above analysis for the
Schwinger model, without using bosonisation. Using Gauss’s law, we

get
QA(X) = exp{- ggéjﬁzz ﬁj(z)ﬁ(x+z)} (2.17)

‘ 2 . , . ,
where SA(Z) is the delta function, smeared over a distance ) in
spacetime, and E, the electric field, is a (pseudo=-)scalar in two

dimensions. The analogy between this and equation 2.10 is clear.

we would like to compare

G(c,y) = deXP%@P

<5, ) > (2.18)
with the same quantity with 1 in place of Q3° Here j59P is the axial
current ;YSY ¥ and ¢ is a spacetime curve circling the spacetime
point y at some distance large compared to A but small compared to
l/e2 (which has dimensions of length). Because of the latter stipu-

lation, we can neglect all but the leading term from perturbation

theory.

Using the anomalous divergence equation,

o

W5, 00 = = O (2.19)

we can revwrite equation 2.18 as

G(e,y) = £ Fd%x < EGO 2 () > (2.20)
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From ;
- 2 2

< E(x) E(y) > = 8§ (x=y) + 0(e”) (2.21)

it follows that
2w 2
< E(x) ‘QA(y) > = - = %\(me)%(yb + 0(e) (2.22)

and

G(c,y) / <@, (0)> = =2 + 0(e?) (2.23)

When Q; is replaced by a c~number in 2.18 and 2.23, the ratio 2.23 is
zero: the limit of 93 as A goes to zero is not a c-number. Q has
much in coumon with a Dirac string; equation 2.22 shows that there is
a lump of flux which does not go away when )\ goes to zero. Our
result here is that a massive fermion does not feel this f£lux in the
limit, whereas a massless fermion does, but that a massless fermion
can be "shielded" from the flux by the additional regulator 2.15.
Hassive and massless bosons appear to behave like massive fermions:
the Green’s function analogous to 2.14 goes to the free propagator in

the limic.

Our results for the four dimensional case are not so conplete.
We discuss them, and more of the analogy with the Dirac string, in

the next sections

3. Green’s Functions of Vortex Operators

In this section we will discuss the calculation of Green’s func-
tions of the V°(C) form of the vortex operator in Euclidean space-
time. For simplicity we shall assume only one charged field, scalars

g(x) with charge e; the generalization to more fields and to fermions
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is straightforward. We can now consider a vortex operator associated
with a general closed curve in spacetime. By analogy to equation

2:10 we define

P - ap. y
Vp (C,8) = eXP{Zedesw?FY5(y)é§975}

mexp{"Lfde’ B (v)) (3.1)

orpocp

where § is any 2-surface whose boundary is C and < 1. There is

1234
no factor of i in the exponent because Ejégiﬁj in Euclidean space-
time. To show that 3.1 is correct, we would like to check that it

satisfies equation 2.3, and that its gauge invariant Green’s func~-

tions are independent of the surface S.

Consider now a general Green’s function of V':

< vp (C,8) > kL = (3.2)

< Vp’(CQS) exp{jdéxjp(x)AP(x)+K(x)¢(x)+L(x)¢*(x)} >

where J , K, and L are general external sources. The expansion of V’
involves terms with arbitrarily large powers of 1l/e, but owing to the

exponential form of V°, these sum up in a convenient way:
p P

1

< fo(C,S) > = exp 2 PITNEYY) (3.3)

JKL khun

< Bpao? F (1 15a JPAPEh[fdax kg1 "Le % Lg% >

apop

c
where < >C indicates the connected Green’s function. The connected
. . . k-+h , _
Green”s function is of order at least e - (e being the charge),
except for k+h=2, m=n=0, for which it starts at order eOe Tne sum in

-2 . .
3:3 therefore starts at order e . Further, the graphs contributing
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at each order in e are readily classified: a graph with n, internal
photon lines (internal means both ends connected to charged lines)

and n, external lines (one end attached to a charged line and one

2n,+n
attached to J ) is of order e * %, independent of the number of

vortex photon lines (defined as lines which run from §, the vortex
operator, to a charged line). The connected graph with no charged

lines (one photon line with both ends attached to 8) is of order eaze

For example, the h=m=n=0 term, which is independent of J}lg K,

and L, and is the only term which contributes to < VP'(CES) >, 1is

2 2
<V 7(C,8) > = expd 2Pg(0)acs) (3.4)
e
2 -2 VS ;32 2
- 4L§§Cdxp§cdy?(XEY) - In det{\ "/37) + 0(e")}
2e
where A(S) is the area of the surface §, st is {D;SD;S}”lg D;S is

bP-ieA;s(x) and A;S(x) is given by the graph of figure la. The first
two terms are from the one photon graph. The third is the sum Qf all
graphs with one charged line connected to 8 by any number of photon
lines. The first term is S dependent and quadratically divergent.

We shall postpone further discussion of 3.4 until the end of this
section. We will consider until then "reduced” Green’s functions,

with the h=m=n=0 term divided out.

To investigate the dependence on S of gauge invariant reduced
Green’s functionss‘consider first the order ec term of
€ F (%) V°(C,8) >/ ¢ ¥V °(C,8) >, which is equal to
FF P 1 p 2 9 ! q
S

d aAVS(x) = 3 A3 (x) = FUo(x) (3.5)
pe T Y T T
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AyS was defined above; 3.5 defines F;S as 1ts curl.

o)~ (x) = 12 d@*y

PP kp 2ed 5-8° p ?75 < F 5(y) FPP(X) >

- I do? | « ¥ + e Y1y - 3.6
e J5-5° ﬁqﬁi o pp°p %‘C{P)'EF’ 18y Ay, (x=y) (3.6)
where < >O indicates the free propagator and Qﬁ is the Euclidean

scalar propagator:
2
A (x=y)==6" (x-y) (3.7)

Using the fact that a completely antisymmetric 5=tensor vanishes in

four dimensions, the quantity in square brackets can be rewritten as

y ¥y y
%PPQ" Pé)’ + %}/PP‘XBIS + %Pyﬂié@

After surface integration the last two terms vanish, because $-S8° has

no boundary, while the remaining term gives, using 3.7,

[

VS(X)WFVS,(X) “gf

bp 55 S e

= - -ggﬂj‘sbsfdf;’;fjéé(x“y) (3.8)

We see that the Green’s function is S—dependent, but only when x lies
directly on S or §°. However, when x lies on 5, < FPP(X) Vp’(CQS) >
is not well defined due to problems of operator ordering. If we
resolve this ordering problem by taking a limit as x approaches §,

FVS is S independent everywhere. In effect this is taking the T-

PP

product, whereas 3f5 defines the Iﬁmproduct {the covariant T* product

is discussed in reference 11},

I[F;P(X)B . T*[EZ;(X)] +~2={gP-de§;P64(x-y) (3.9)

is independent of S.
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Now let us go one order further, and consider

G(P,C,8) = {3-10)

< ¢*(x)exp{iej}dx’FAP(x§))g(y) V,T(C8) >/ <V T(C,8) >

where P is some path from y to x. To lowest (eo) order, this gauge
invariant Green’s function is given by all graphs of the form shown

in figure lb. These graphs sum up to give
~ e vS ) . LVS, ;
G(P,C,5) = = A" (y,x)exp{iefpdx %XA%l (x°)}) (3.11)

Using the path integral representationlz for the propagator Qfs(ypx),

we can write
G(P.C,5) = =exp{iefpdx’ A" (x')) (3.12)
pe -

2
= m 1. o . 2 VS
f Dz ds exp{jﬁdc - - ZZPZP + iez & (2))

with Dz indicating the integral over all paths z(t) such that z{(0)=x
and z(s)=y, and éP is dz /dt. As long as AvS is smooth (we must tem-
porarily smear out the surface S) the path integral can be made
wmathematically precise (see the review article by Gelfand and
Yaglomls); at this level we simply have an external field problem and
there are no short distance difficulties. The right hand side of

3.12 depends on A;S only through the phase factors

exp{ie§c,dx'FA;S(xf>} - exp{iS T* [V

€ .
2 Ta(cy 00 T g pl? (3019

where C° is the closed curve formed by joining P with z(t) and K(C")
is any 2-surface whose boundary is C°. To obtain equation 3.13 we

had to use equation 3.1, which defines the S-~dependent T*[ngje We
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cannot try to simply define this S-dependence away by replacing

% .. V5
T [FQ?

choice of the arbitrary surface R.

} with T[§;$£9 as the result would in general depend on the

From 3.8 and 3.13, it follows that changing the surface on which
Vp§ is defined changes the phase associated with the path C° by a

factor
~y b
exp{irspfsasgd@;Pdeaégé (x-y)} (3.14)

In four dimensions, a closed curve, C°, links a closed 2-surface, S~

S°, a definite, integral, number of times, N_ (leaving out for now

I
those particle paths which actually intersect S or §°). Any surface

R bounded by C° will then intersect S$-=5° at N_ points (intersections

I
are defined in an oriented way, so that it is the net nuwmber of
intersections that is counted). Setting up local coordinate systems
on 5=5° and on R near such an intersection, one finds that the double
integral in 3.14 is exactly ZNIe The phase then changes by

exp{ZWipNI} vnder the change of surface, which is 1 if p is an

integer as required by the earlier quantization condition-

The above argument is extremely familiar: it is just the argu-
ment that one can have magnetic monopoles in an Abelian gauge theory,
if the monopole charge 1is quantized so that the charged particles
don’t “see”™ the monopole’s Dirac string?a In fact, just as the Wil=-
son loop can be regarded as the world-line of a classical charged
particle, the vortex operator can be regarded as the world-line of a
classical monopole, with the surface S as the world-sheet of the

Dirac string. There is one problewm with the Dirac string, and that

problem is also present here: what of paths which actually pass
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through the surface §? If we smear the integral defining Vp’ (or
that for Vp) and let the smearing vanish as a limit, can we neglect
paths passing through S because they are of "measure zero", or do
they contribute in a sufficilently singular way that their effect does

not go away?

This is exactly the question that was raised from a different
point of view at the end of the last section. In our two dimensional
model 1t was foéhd, in effect, that when the support of our Dirac
string (there it was a "Dirac lump") poes to zero with the total flux
staying constant, under soue conditions (massless fermions) the
effect of paths through the lump survives in the limit, while under
others (massive fez@ions and bosons) the effect vanishes. Even in
the massless fermion case it was possible to obtain the desired limit
by adding additional regulators to the operator, which can be thought

of as correcting the action for paths that pass through the lump.

The four dimensional case is not so easily analyzed. For § an
infinite 2-plane (so that C is infinitely far off in some direction)
the charged field propagator is easily calculated with the flux
smeared, and one finds that it approaches the free propagator for
massive or massless fermions, or for bosons. In the presence of this
2-plane plus an additional smooth A =field, however, an argument
similar to that for the Schwinger wmodel (based on the anomalous
divergence of the axial current) shows that the effect of the Dirac
string survives in the limit if the fermions are massless. An extra
regulator of the same forw as = in 2.17 {(essentially giving the fer-
mions a mass very near the string) corrects this particular problem.

We have not been able to show, however, that this is the only
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additional operator needed in general, or that no correction 1s ever
needed for massive fermions or bosons. 1t seems quite likely, how=
ever, that i1if we do need to correct the action for paths passing
through the string, this correction will always take the form of
local operators near the string. The whole point 1s, perhaps, wmoot,
as we shall see that the Green’s functions are uniquely determined
without knowing the detailed form of the extra regulator (just as in
the two dimensional case, we do not really need to know the form of
=; once we know ;hat 0 is a c=number, all of its Green’s functions

are fixed up to an overall constant!).

Many other solutions for the Dirac veto problem have been given.
Brandt, Neri, and Zwanziger7 have rewritten a field theory of charges
and monopoles as an integral over all numbers and configurations of
particle paths. They then define the action associated with confi-
gurations having charge paths intersecting nonopole strings as the
limit of that for non-intersecting configurations. In a monopole
field theory, our solution would have the form of a smeared Dirac
string and an additional non-local charge monopole interaction along

the string.

Hereafter we assume that Vp”(C,S) has been defined in such a way
as to have the desired limit, so that G(P,C,;5) is independent of S.
It then follows that there is a gauge transformation g($,5%;x),

defined except when x lies on S or §°, such that
vs”’ p vS & ,
A7 (y,x) = g(S,873y)A "87 (5,87 5%) (3-15a)

5
AY

‘ S i %
(x) = 4°°(x) + 2g(S,57;x)d £%(5,5° ;%) (3.15b)
P H € B
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S

Any gauge independent quantity constructed from AY® and be is there-

fore S—independent as well.

At least in the present case, where there is only a classical
monopole, we can evaluate gquantities such‘as G{(P,C,8) or st(x,y)
without using eilther an explicit form for Vp§§cgs) or the path
integral prescription. Equations 3.15 by themselves give sufficient
information to determine the Green’s functions we want, using a
geometrical approach {in the sense of differential geometry) due to

1 ,
Wu and Yang ée Consider two non-intersecting surfaces, Sl and st

each having C as its boundary. Take spacetime with Es a thin tube
contalning €, removed. This space can be covered by two overlapping

cpen regilons, Ql and ng such that §, lies entirely in QZ9 and S

1

vS1 VSZ
lies entirely in Qla AF (x) is defined for x in ng and Afu (x) is

2

defined for x in QZ; in the overlap region these functions are
related by 3.15b. They are given, as before, by the simple one pho-
ton graph, and g(slgszgx) can be determined in terms of this graph.
Any other gauge and S-dependent quantity can similarly be represented
as a pair of functions {or, for‘@f as four functions, since it has
two arguments), each defined only in a certain region but related in

the overlap region by the gauge transformation g(Slgs ;%x).  Gauge

2
dependent quantities are thus "sections': sets of functions each
defined only in an open region, but such that the regions cover all

of spacetime (minus € in this case) and such that the functions are

related in the overlap of two or more regions.

Integrals of gauge (and therefore 5-) independent products of

. 4 = . ,
sections over R = C can then be defined: in each region the
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integrand 1is defined in terms of the function which exists in that
region; in overlap regions this is unambiguous because the integrand
is S-independent. With an inner product based on this integral, ppY
acting on sections can be made self-adjoint. It follows that Ay as a
section exists and is unique. st can be obtained from it as a func=
tion defined everywhere except on S. Power counting arguwents, as
developed in the next section, indicate that the limit as the cutoff

C is removed exists, at least order by order in p.

We may now consider higher order corrections to Green’s func-
tions. All graphs with a given configuration of charged lines and
internal and external photon lines are of the same order in e; sunm~

ming over all numbers of vortex photon lines gives one graph of the

Lh]

same configuration with no vortex photon lines but with "effective”
propagators and vertices. The photon propagator and ¢*¢A2 vertex are
unchanged, and the charged propagator becomes - st(xpy)a The ¢*¢AP
vertex picks up an extra term from graphs where a ¢*¢A2 vertex is

connected to one vortex photon line and one other photon line; it

2ys
becomes =ieD ""(x). Equation 3.3 then becones

< VPg(Css) >, 1€V, (68) > o= eXpén’ Timial (3.16)
4 h 4 m 4 &0
< [Jd'x JPAPA] [Jd x K¢l [Jd x Lg™]1" > o

where the prime on the sum excludes the term h=k=1=0 and the sub-
script ¢vS dindicates all connected graphs constructed out of the
effective vertices and propagators. Examples of higher order correc=

tions to < AF(X) VPQ(CQS) >/ < Vp”(C,S) > are shown in figure 2.
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It is then evident that higher order corrections to gauge
invariant reduced Green’s functions are S—independent: under a change
of 5, the phase factors from two propagators meeting at a ¢*¢A2 ver-
tex or an external source cancel; the total change 1in the propagators
and vertex at a ¢*¢AP vertex vanishes. Actually, this is not
strictly true if we have defined the vortex operator by smearing S
and adding additional operators. The Feynman integrals in coordinate
space include points lying in S, for which equations 3.15 do not
hold. As in the case of the propagator, we would expect to be able
to "repair"” the Feynman integrals with additional corvections to the
definition of Vp’(C,S)s Again, we need never know the form of these
corrections: regavrding the propagators and vertex functions as sec-
tions, the Feynman integral for each graph can be written as the

invariant integral discussed above, and the result is unique.

We can now demonstrate equation 2.5

d T<F (x) V.°(C,8) > =3 (T-T")< F (x) V_°(C,8) >
B opp P z pp P

[

& (T-T®)< F v “(C,S
p TR 00 V76 >,

f

2 4 .
mg?§cdyPé (x=y)< v (C,8) > (3.17)

The first equation follows because T*(% ) is defined as

3@T*(A ) and so its divergence vanlshes identically. The

<

ppecp p
second equality (the subscript indicates the lowest order graph, fig-
ure la) follows because any higher order graphs for the T* Green’s

function, such those of figure 2, are S-independent and therefore

continuous when x is at S: they do not contribute to (’IET*)a The



24

final equality follows from equation 3.9. Since & F {(x)=0 is true
as an operator equation, 3.17 represents a commutator and is in fact
the covariant version of 2.5. Equation 2.5 is an operator equation

and we have only considered one matrix element of it; the same argu-

ment can be readily applied to any gauge 1lnvariant matrix element.

Equation 2.3 is also true. If we consider < Wq(C’) VP’(C,S) >,
only the graph of figure 3a has a discontinuity whenever C° crosses
S: the Green’s function jumps by a factor gxp[gﬁégg]a This 1s the
covariant form of 2.3. Figures 3b, 3c, etc. are S~independent and
therefore continuous at 5. Equation 2.5 thus exponentiates to give
2.3. Ordinarily this would not be true, because in general the con-
mutators QfK? do not determine those of the Wilson loop (although
they do in naive canonical manipulations) because graphs such as 3¢
which depend on the composite nature of WQ(CQ) have discontinuities;
this is not a problem here. The location of the discontinuity of
< wq(@f) V “(C,8) > does depend on S, unlike the Green’s functions of

local gauge invariants.

For later use we would like to examine the S=dependence of
gauge-dependent quantities. From 3.15 and the effective Feyuman

rules, it follows that

< A}A(x)q,ag(y)mgﬁ(z)“,vp’(c»s‘*) >/ < vp”(cjsw > (3.18)
i o % # »
= < AGOTR(SS ;x)éyg (5,57 3%) 8 (5,57 3y)g(y)e -

g*(SgS”;z>¢*<z)eaevp’<cgs> >/ < vp’(cas> >

we shall also be interested in the singularities of gauge dependent
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quantities near S. The singular behavior of A;S(x), all from figure
la, is:

vS 2

AP (x) §=§é@ﬁanl@nzprP/r

(3.19a)
where n, and n, are orthogonal unit vectors lying in S and r is the

vector from ¥ to the nearest point on S From 3.15b and 3.193 we

derive
g(8,8°;x) = explip8(x)] {3-19b)

where 8§’ is any surface distant from S and x. ©(x) is defined by
taking a8 2=-plane normal to S and containing x: 5 will intersect this
plane in one point and 8(x) is defined as the angle around this
point, from x to an arbitrary fixed direction in the plane. 1t fol-
lows from 3.15a that for x near §, st(x,y) is exp[~ip®(x)] times a
non-singular function, and for y near S it is exp[ipu(y)] times a

non-singular function.

We have found that reduced gauge invariant Green®s functions are
S independent, we return now to the factor that we divided out, equa-
tion 3.4. < Vpa(C9S) > is given by the graph with one photon start=
ing and ending on S, plus the sum of all vacuum bubbles constructed
out of the effective propagators and vertices. For example, the
determinant term in 3.4 is from the graph whi;h is just one closed
loop of the effective propagator £f? As discussed earlier, graphs
constructed from the effective propagators and vertices are all §
independent. The only § dependence is that which we have found
explicitly, the 52(0) term. We can take this term to be an artifact

&

of the way we have defined Vp when two of the fields in the expan-
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sion of the exponential are at the same point, and divide it out of
the definition: all Green’s functions are then S-independent. It is
good that this term can be identified so unambiguously, se that
artificial § dependence can be distinguished from a real, physical
dependence of the vacuum expectation value of the vortex operator on
the area of the minimal surface spanning C. Of the surviving terms
in 3.4, the first is exactly the same as the leadipg term in the
expectation value of the Wilson loop, with the replacement of %? for
e. The next is of a form familiar from functional integrals. In
fact, < VP’(Cgs) > can be interpreted either in the normal way as a
functional integral over continuous A and ¢ fields with Vp’(CQS)
inserted into the integrand, or as a functional inregral wi:ih no
insertion in the integrand but with the A and ¢ fields fixed to have
the discontinuities 3.18 on S. Since we want to be careful about

divergence problems, we will stay with the first interpretation.

In a Higgs phase, equation 3.16 still holds; there are no extra
terms involving tadpoles. To see this, recall that in both the sym-
metric and Higgs phase, a general connected Green’s function is equal
simply to the sum of all connected Feynman graphs, without tadpoles
but including graphs with "trees". By a tree we mean a plece which
connects to no external lines aund which can be separated from the
rest of the graph by cutting a singyle propagator, its trunk; we do
not mean a graph without loops. The two phases are distinguished by
the nature of the sum over all trees, which is equal to the minimunm
of the effective potential. When we sum over all numbers of vortex
photon lines attaching to all Feynman graphs (with trees), we get all

graphs (including those with trees) made up of effective vertices and



27

propagators; this is 3.16. The sum over all trees is given by the
minimum of the "effective potential in the presence of the vortex",
which is obtained from the same graphs as the usual effective poten-

tial, but using the effective propagators and vertices.

4» Renormalization of Looplike Operators

In the preceding sections, we neglected renormalization. We did
not specify whether quantities were bare or renormalized, we did not
include graphs with counterterms, and we did not consider the conver-
gence of the various graphs. These points are the subject of the
present section. We include first, as an illustration of some of the
ideas, a short section on the renormalization of the Wilson loop

operator.
4.1. Renormalization of Green’s Functions of the Wilson Loop

The Wilson loop is a composite operator involving products of
arbitrarily wmany elementary fields. The associated divergences, how-
ever, turn out to be easily analyzed, at least in the Abelian case:
all matrix elements can be made finite by one overall multiplication

fl 16 17
of the operator . Gervais and Neveu and Polyakov have shown by
the use of elegant methods that the same is true of the non-Abelian

Wilson loop.

A general Green’s function of the Wilson operator, < we(C) >JKL”

defined by analogy to equation 3.2, is given by

1

< we(c) > = exp 2 kithimin! (4-1)

JKL khmn
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. k 4 h 4 ) ‘ 4
< {1§CdyP€AP(y)] [fd x J A ] [Td % h¢3“£jﬁ % L¢k}ﬂ >C

The quantity ed (y) is invariant under renormalization, due to the
Ward identity: erAz = QOAO, where subscripts r and o represent renor=
malized and bare quantities, respectively. When it is necessary to
take a particular renormalization scheme, we will use subtraction at
zero momentum {this is acceptable when the charged fields are all
nassive, which, for simplicity, we assume). If we then take the
fields coupled to J, K, and L to be the renormalized ones, the con-
nected Green’s functions in equation 4.1 are all renormalized: they
are finite when not evaluated at the same spacetime point, and they
are integrable over spacetime regions that include coincident points.
1f we take JP(X)9 K(x), and L{(x) to be smooth, the associated x
integrals all exist.

\

The only possible divergence comes when k is greater than 1, so
that there is a multiple integral over C. This may diverge when two
or more integrands approach each other along the loop. 7o emphasize
the region in the multiple loop integral where j of the arguments

approach each other along the loop, we represent 4.1 as

(ie)jfi;dx jhdylmdy2p°’°dyjy

8¢
i

LA A

Z lyiwyllm x) < A&(yl)eeeAy(yj) s & o >C

o fiayd j=2
(ie) fipdx X jEdylmdwzp dwjy (4-2)

i .
6( 2 lwia - 1)< A@(yl)Ap(yl+xw2)eaeAy(yl+wa) ° 80 >

i=2 c



29

where the final ellipsis in the Green’s functions indicates the
remaining operators, coupled to external sources or to distant points
on C. To get the leading x—»0 behavior of the Green’s function we
use the operator product expaﬂsionls to write the product of j A’s in

the Green’s function as

g()@e o o y(xwza ° o o sij)el

+ gl@ea e)',P(xwzﬁg o e gij)sAP(yl) 4+ higher operators

This form places all of the x dependence in thé coefficient functions
8 We implicitly use a covariant gauge so as to avoid direction
dependendent singularities, as found, for instance, in the axial

gauge.

At fixed x, the j points cannot be coincident. We cannot
assune, however, that the w-integrations converge, as there will be
regions in integration space where some subset of the points come
together. We will assume a coordinate-space version of Weinberg’s

19 . . . .
theorem ~, which we have not proved but which seems quite plausible:
that 1t suffices to consider just the x-integrations for each subset
of points, and if naive power counting indicates that every one of
these 1s convergent then the whole integral will be. 1In fact this is
not necessary: at least when C is an infinite straight line the
Green’s functions can be written in momentum space. Weinbery’s

. 18 .
theorem and BPHZ subtraction may then be applied rigorously to ver-
ify the conclusions reached below. It 1s then very plausible that
for a smooth curve C the leading divergences are the same as for the

straight line. The coordinate=space argument is shorter and perhaps
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more interesting.

Because An is of dimension 1, at each order in perturbation
i

theory (we are renormalizing order by order) B0t « o e),(xw) is of order
it . =j+1
X times logarithms and g;q P(XW) is of order x times loga-
rithms; the higher coefficient functions are all smaller as x-20.
The x-integration associated with the operator 1 is then linearly
divergent. Performing the x integration with a distance cutoff Aal
and the w integration leaving out those subregions where subsets of

points become coincident, the c-nuuber piece of 4.2 becomes
i s e 0 > .
{ Rﬁﬂ)jhdylcglx(yl) + finite terms } < . (4.3)

where R is of order A, n@(yl) is a unit vector tangent to C at Yy
and the ellipsis in the matrix element is the same as in 4.2. 1If C
were straight, it would be clear why n@ must appear: there is no
other available vector. For C a smooth curve, the leading divergence
is the same as for a straight line, since points close together don’t
see the curvature; therefore nm(yl) appears. To put that another
way, curvature, the lowest dimensional measure of the actual shape of
C, is of dimension two; its coefficient must be two powers less
divergent than linear (that is, convergent). This argument fails if
C has a kink, as the curvature there is infinite. 1In general there
will be a composite divergence associated with a kink that is one
power weaker than the leading divergence, from endpoint effects in
the integration. There would therefore be an additional logarithmic
divergence for each kink. This was also found by Gervais and
Neveulea The integral in 4.3 is simply the perimeter P(C), and so

the diverpgence corresponding to the c=number in the operator product
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expansion (which arises from graphs with no external lines) can be
removed by multiplication of the Wilson loop by an overall factor

exp [-RA)P(C)] .

The only other divergence is in the coefficient of & (x). This
is logarithmic and is given by graphs which have external lines but
are such that cutting a single photon line separates all of the
external lines from the Wilson loop. As one might expect, this
divergence is actually absent due to the Ward identity. In fact, in

our particular scheme (zero momentum subtraction),

{xw sega,ij) = G (xw ,eee,ij;O) (4-4)

gl@eaeyP 2 @eoa)j}l 2
where G is the japhotén Green’s function with one leg (the one with
index p) truncated and set to zero momentum. G satisfies a Ward

identity

RFG@'se Qyp(xwzseea,ij;k):u (4.5)

From 4.5 and the fact that G 1is continuous at k =0 (for massive
charged particles) it follows that G vanishes at zero momentum. By
is identically zero and that there is no divergence coming from con-
nected graphs with external lines. In fact, g, can be shown to van-

ish by gauge invariance in any renormalization scheme.

We find, then, that all matrix elements of the Abelian Wilson

loop can be made finite by one overall multiplication§
4.2, Renormalization of Green’s Functions of the Vortex Operator

The analysis of the vortex operator proceeds much like the
analysis of the Wilson loop, and the result is the same: an overall

multiplication makes all matrix elements finite. There is a
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potential logarithmic operator divergence, as for the Wilson loop,
but its coefficient again turns out to vanish. The vanishing is here
more intricate, involving cancellation of field renormalization
divergences against composite operator divergences. Our nicest
result, that T[?v ] is finite for an infinite straight vortex, can be
obtained in a few lines (egquations 4.10-%.12). The rest of this sec~
tion 1s simply power counting to establish that this implies the
cutoff independence of all matrix elements of vortex operators for

any curve.

F b
We first must ask whether the combinations »%Q’and i?’&ppearing

in 2.6 and 3.1 refer to the bare or the renormalized fields and
charges, since these combinations are not inmvariant under renormali-
zation. A canonical argument indicates that they must be bare-
Equations 2.7 hold only for the bare quantities; 1f the renormalized
quantities were to appear on the left hand side of 2.7, an extra fac=-
tor of Z;i would be needed on the right hand side. In order to have
a finlte commutator with the Wilson loop, as in 2.3, or with charged
fields, as in 2.8, it is then clear that we must have the bare guan-
F ]

tities ZPP and L

(o] O

We can also reach this same conclusion from the Green’s funce-
tions. The discussion of the last section did not include graphs
with counterterms. This is corvect 1if all fields and couplings,
including those in the definition of Vp’g are the bare ones (we must
have a cutoff at this point). Otherwise, graphs with counterterms
enter and spoil the quantization condition. The exponent in the

definition of \/'p’y must therefore be cutoff dependent. If we had



33

started by defining Vp’ with the renormalized guantities FKP and €.
we would have found that p/23§ not p, was an integer, so that the
cutoff dependence would werely be shifted into p. Either way, write

ing Vp’ in terms of cutoff independent p, e, and FFP gives

apl
Vp (C,5) = exp{ -

:%Edcipgrqp(y)} (4.6)
T

with an explicitly cutoff dependent exponent. Note also that this
implies that the total coefficient (all counterterms summed) of the
one photon graph for < e F V °(C,5) » or for < e ¥ Vv “(C,S)

P grap ° DFP p » £ EVF p 5

3

3.17, which comes entirely from the one photon graph, is correct with

is mp, with no factors of Z2,. This in turn implies that equation

F  and e either both bare or both renormalized; explicitly,

P e Zﬁ @ !é, 4 4 .
3PT< FIF?(X)VP (C,8) > = 2§%§Cdx PS (x=x")< V 7(C,8) > (3.17°)

We now investigate the cutoff dependence of the Green’s func~
tions of the vortex operator. Starting with the expression 3.3, we
can analyze the divergences of the Green’s functions very much as we
did for the Wilson loop. There are two differences. One is that V,
unlike W, contains a manifest cutoff dependence from field renormali~
zation, as discussed above. The second difference is in the analysis
of the composite divergences, where the vortex involves an integral
over a two~ rather than one-dimensional surface, and the field being
integrated is of dimension two vather than one. Tnis second differ-
ence 1is small: because the exponent i1s dimensionless for both opera-
tors, in each case there is only a small number of divergences. The

analog of equation 4.2 when j points coue together is
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. . b W W,
v o (Ap.j 23=3 1 2 i (4.7)
< v? {C,58) > SKL (*‘;) jg dx x j‘sdﬁqu@%awdﬁ%)

b - - - A
S(iiz !wil =1)< Eggg(yl)gyg(yl+xw2)aQGFFF(yl#x“E) e

The small x expansion for the operator product 1s now

hOczISs}’sasswPP(Xw‘zwngij)d (4.8)

+ hlﬁ?sYSQy@ 6spp;aﬁ(xwzﬁe@e’ij)aFﬁA(yl)

* 7 e @ a o
F a6, oo pp e X T BG

The expansion includes only gauge invariant operators, because the

operator product is gauge invariant. ho is of ovxder xﬁz] and hl and

~2342

h, are of order x , 80 that the x-integration for the coefficient

2
of 1 is guadratically divergent, and those for the coefficients of

F and ¢*¢ are logarithmically divergent.

PP

We have neglected the extra operators in Vp’(css) that we con=
cluded were needed to assure S-independence. In the two dimensional
case, equations 2.16 indicate that the effective dimension of
dzz EA(Z) in units of mass is greater than =2 but less than ~l. The
total dimension of the exponent of = is then negative; it is a "soft"
operator. We expect that this property will hold in general. The
inclusion of these additional operators, then, will give additional

contributions to the coefficient functions in 4.3, but will not lead

to any stronger singularities.

The divergence proportional to 1 implies a common infinite fac-

tor of the form exp[R (-A\)A(5)] in every matrix element of VP§, with
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A(S) the area of the surface S, and with R’ being of ordez‘Azg Just
such a divergence was found from the one photon graph in the last
section, where it was also shown that such a term, being explicitly §
dependent, could mot arise frow any higher order graph. It can
therefore be unambiguously divided out. The operator 1 in the expan-
sion also gives rise to a linearly divergent term proportional to the
perimeter P(C), from edge effects in the surface integrals. This was
also found from the one photon graph; for this divergence we would
expect that higher order graphs will also contribute. At any rate,
it can be divided out by a factor of the form expl[=R""(AIP(C)], with

R°’ being of order A.

The logarithmic divergence from the hl and hz can be removed by
the addition of three counterterms to the exponent of vp’(CDS) {as in
the case of the Wilson loop, this conclusion can be verified

rigorously by use of Weinberz®s theorem and BPHZ subtraction when C

is a straight line):

¥ o=

ey = JgogpFo g (4-9a)

c, = JydoT oF_ (4+9b)
2 ap 53

ey = jsidaépm*(y)wy) (4.5¢)

|de | appears in ¢, for the same reason that dyl@nq(yi) (which is

@p 3

just ldyli) appears in 4-.3: there 1s no other Euclidean invariant

form for the leading divergence.

The counterterm ¢, is forbidden by by CP invariance. de F
2 xfocp

is CP even; as a result, so is any logarithmic composite divergence
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{because a smooth surface is CP invariant to the extent that its cur-

vature can be neglected), while c, is CP odd- €q is forbidden by the

S-independence of gauge invariant Green’s functions. The easiest way
to see this i1s to consider a surface S which doubles back on itself.
It is important that because of S-independence, there is no new com-
posite divergence associated with this doubling back. The doubled
surface cancels out in the definition of VP’(Cgs), because dﬁ’cz‘3 is
oriented; it must therefore cancel out in any divergences. It does

cancel in ¢. and ¢ | is not oriented. We

1 2° ogﬁ

conclude that all of the composite divergence can be removed by a

but not in €y @S |de

term of the form fQﬂ)ecla

There is still the second source of cutoff dependence in the

3

this is of exactly the same forwm as the counterterm 4-.9a; an

Green’s functions of Vp"(C;S)5 the factor of Z, in 4.6. We see that

appropriate choice of £{A) can remove this divergence as well, leav-

ing every Green’s function of the vortex operator finite.

Since there is only one unknown function of the cutoff, we can
determine it by calculating one single Green’s function of one par=-

ticular vortex operator. A convenient choice is

T< (x) Vp"(z,Y) >/ < Vp’(Z,Y) > (4.10)

F
thp
where Z is the line yozylayzgo and Y is the half-plane yGEyl'sOs yj2>0a

By Euclidean invariance, this must be given by

a(xz) € % %«b(xz) {x (4.11)
z z

pP@3 20¢ ZF6P3 - XZPSFB}

where x, is the vector from Z to x which is perpendicular to 2.

Under parity, Vp’(Z,Y) goes into VP’(Z,Y’)9 where Y’ is the half-
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plane yosylgO, y2<0 {note carefully that p doesn’t change sign). The
gauge invariant Green’s functions of these two operators are equal.
Underxr xoa%xog xiw%@xig the Green’s function 4.10 then has natural
parity: space-space components are invariant and space-time com=

ponents change sign. Only the first term is 4.11 has natural parity;

it must be that b(xi):oe Equation 3-.17° then requires that

2. p 2.-3/2
alxyg) = - Zez(xN) (4.12)
Remarkably, the Green’s function 4.10 is completely determined, and
it is cutoff independent without counterterms: f(A) = 0. The factor
of 2, in 4.6 provides just the cutoff dependence to cancel that in

3

the conposite divergence.

Equation 4.12 was found independently by S. Colemanzo in the
context of the non-renormalization of the product e s, where & is
the magnetic charge of an external monopole. In this context, the
operator product argunents are a demonstration that one can in fact
make all Green’s functions evaluated in the presence of an external

monopole finite by renormalization of the magnetic charge-

We illustrate the cancellation with among the order e graphs.

The order e contribution to 4.10 is figure 2a. Expanding the effec~
tive vertex and propagator in terms of the usual ones gives all
graphs with one charged loop and no internal photons, such as those
of figure 4. The graphs of figure 4a have the usual divergence,
ordinarily this would be cancelled by a counterterm from the order
e“1 graph, figure la. Here, this counterterm 1s absent owing to the
factor of Z, in 4.6. However, the graphs of figure 4b are also

3

divergent when the integration over the womenta of the photons
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attached to Vpg is included. What we have found above is that the
divergences of 4b exactly cancel those of 4a. This cancellation has
an interesting feature: the different graphs are proportional to dif=-
ferent powers of p, depending on how many photon lines attach to Vpae
When we let p vary, the full cancellation occurs only for integral p,
as only then can we say that the Green’s function is independent of §

and that 4.11 is the only allowed form.

The fact that the matrix elements of the vortex operator turn
out to be automatically finite is rather important. If we had had to
add a counterterm 4.9%a to the exponent of VP', its commutation rela-
tions 2.3 and 2.5 would then have become cutoff dependent. We hope
to find that there are relations between the commutation relations of
Vp” (that is, the fact that it is a vortex operator) and its Green’s
functions; this would seem unlikely 1f cutoff independent commutators
had been incompatible with cutoff independent Green’s functions.

This is remeniscent of the situation with Noether currents, genera-
tors of exact symmetries: there also we wish to ascribe physical sig-
nificance to commutators, and there also the commutators and the

Green’s functions are simultaneocusly finite.

There 1s one weakness in the above analysis. What we have
veally shown with the operator product analysis is that the counter-

tern c, suffices to remove all divergences from Green’s functions of

Vp when they are expanded order by order in p (thus, in 4.6 we have
isolated all graphs of order pj)e It would be preferable 1f we could
first sum to all orders of p, getting effective propagators and ver-
tices as before, and then analyze the divergences directly from the

short distance properties of these effective propagators and
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vertices. We do not expect that our conclusions would change; how-
ever, we shall see in the next section that an expansion of the
Green’s functions in powers of p can sometimes lead to erroneous con=-
clusions, so it would be good to have an analysis of the divergences
which did not rely on such an expansion. DNote that the finiteness of
4.10 was independent of the expansion in p. It would also be
interesting to see what effect hard P- or CP= violating interactions

£3

would have on the analysis.

5. Cluster Properties of Looplike Operators

, . . . , 5
In this section we give a short discussion of the Wilson™ and
‘t H@oftscriterias emphasizing the idea of cluster property rather
than vacuum expectation value. The general discussion applies to

non-Abelian as well as Abelian theories.

Consider the Euclidean Green’s function

G(x,C) = <€ 8(x) WS(C) >C

= < 8{x) ws((:) > = <€ B(x) > < wS(C) > (5. 1)

a a
qPFySB In

the phases we have mentioned above, this function will behave in one

with 8(x) some local gauge invariant operator such as F

of three ways when C is very large:

Short distaﬂce clustering: G(x,C) falls off exponentially with

d(x,C), the distance between x and C.

Surface clustering: G(x,C) 1s nonvanishing near the minimal sur-

face, SM9 spanning C, and falls off exponentially away from that
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surface.
Long distance clustering: G(x,C) falls off as a power of d{(x,C).

These alternatives may be better understood by considering a
typical state of the system in a 3-surface cutting perpendicularly
through C. 1In this 3-surface, one sees a source/antisource pair, ¢
and Z; where C intersects the surface. If the clustering is short
range, there are only short range, Yukawa, fields around the sources,
and vacuum elsewhere. If the clustering is surface-like, there is a
tube of non-vacuun joining ¢ and E} whose energy per unit length
gives rise to a linear potential between the external sources. If
the clustering is long range, c and ¢ have Coulomb-like fields with a
power law fall-off. Long range clustering is only possible if there
are massless particles. The other two types of clustering each have
a characteristic scale (the range of the Yukawa field or the thick~-
ness of the tube) which are determined by the mass mL of the lightest
particle. As mLP(C) is taken to zero, either by shrinking C or by
letting m  go to zero, the first two cluster properties turn continu=-
ously into the third. One might also imagine more general cluster
properties, of course. These three, however, seem to cover all those

which have arisen in various gauge theories and models.

We can also consider the cluster properties of Green’s functions
of the vortex operator VP(C) (p designating the homotopy class); the
same three possibilitles seem to avise. The cluster property appears
to be largely independent of the operator &(x). For instance, if a
tube of non-vacuum runs between ¢ and EQ we would expect most local

operators to have within the tube an expectation value different from
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that which they have in vacuum. It may, however, depend on the
representation s of the kWilson loop, or the howotopy class p of the
vortex operator. A general phase, then, may be characterized by
which of the three cluster properties 1s realized for each represen-
tation and for each homotopy class. A confining theory 1is one in
which the Wilson loop, at least in some representations, has surface
clustering, as this implies linear confinement of external charges in
those representations; this is the Wilson criterion§s The ‘t Hooft
critervion defines a (completely broken) Higgs theory as one in which
some of the vortex operators have surface clustering, as this implies

that magnetic flux is forming into tubes.

This classification is closely related to the usual classifica-
tion of phases in terms of the vacuum expectation values of the Wil-
son and vortex operators. For a very large curve C, the vacuum
expectation value of a2 general looplike operator X(C) will be dom-

inated by exp[sscljg where
5., = Ja'% € L) X(C) >/ < X(©) > (5.2)

and L{x) is the Lagrangian density. The connected Green’s function
in 5.2 is a special case of 5.1. For short distance clustering the
integrand in 5.2 will be nonzero only for x near C, so that the whole
integral is proportional to P(C): < X(C) > follows a perimeter law.
For surface clustering, the integrand will be nonzero only for x near
the minimal‘surfaceg g0 that the whole integral is proportional to
A(SM)Q In phases without massless particles, there is a one-to-one
correspondence between an area law and surface clustering, and

between a perimeter law and short range clustering.
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For long range clustering, the integrand is proportional to
d(X;C)k; the behavior of the integral depends on the particular value
of ko 1In QED k is =4; the integral is dominated by small values of
d{x,C) and 1s proportional to P. If k were =2, the integral over
d(x,C) diverges linearly until cut off at the linear dimension of the
loop; the whole integral would be proportional to the square of this
linear dimension, as it is for surface clustering. In this case
there also be a linear potential between external sources, but
without the formation of a flux tube. There would be, however, a
strongly interacting massless particle, which is not observed.
Furthermore, it is not clear that it is possible to find a consistent

physical picture in which k is =2.

One of “t hooft’s restrictions on the possible phases is that if

in

a Wilson loop and vortex operator do not commute {the phase ZSL

2.2 is not 1) they cannot both have short range clusteringse The key

idea is to consider the Euclidean Green®s function
<V (C,8) W {C') > (5.3)
p s

for two large curves C and C°. 1If both operators have short range
clustering only, and if C and C° are not near each other at any
point, the Green’s function 5.3 should be invariant under translation
of C°, as this is essentially a translation through vacuun, except
when C’° crosses S. When C; does cross 5, the Creené function jumps
by a phase due to the canonical commutator. A short fourmdimensional
-argument then showg this to be inconsistent with the single-
valuedness of the Green’s function; see reference 3. “t Hooft men-

tions a phase ambiguity in the Green®s function 5.3; this is the fact
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that 1t can change by a phase under a change of S with € and C’
fixed. It is important that once § is fixed, the Green’s function is

not ambiguous and must be single=valued.

Short distance clustering 1s analogous to that for pointlike
fields in a massive theory, where the general counected two-point
Green’s function falls off exponentially with distance. Long dis-
tance clustering is analogous to that for pointlike fields in a mass=-
less theovry. Surface clustering is a new feature; it seems to arise
when there is a flux which can neither spread nor be shielded. To
learn more about it we shall consider a simple exanple of an operator

with surface clustering, namely the vortex operator in a Higgs phase.

In an Abelian theory without magnetic monopole fields, we can
show that the vortex operator can never have short range clustering,
so that in any Abelian theory without massless particles it will have
a surface clustering and obey an area law. ¥rom 3.17° and Gauss’s

law we find

- do™ F v °(C,S L 5.4
Tydopy ¢ By (0 ¥,7(6,8) > = S v 7(,5) > (5.4)

where C is a large curve and B is a 2-sphere linking C (in four
dimensions curves and Z2-spheres link). All fielas and charges in
this section are taken to be renormalized. The integral over b is
independent of the radius of B. On the other hand, since the Green’s
function in 5.4 1s gauge invariant, short range clustering would
require it to fall exponentially when the radius of B is greater than

m this is inconsistent with equation 5.4-

L;
What we have shown is really quite simple: magnetic flux can

never be shielded. 1If the absence of massless fields then makes it



44

impossible to have a Coulaib field, magnetic flux can only form into
tubes. Given that magnet:: flux is confined, one can extend ‘¢
Hooft’s more recent resulzsé to the Abelian case to show that all
Wilson loops must obey a mrimeter law. 1t follows that a continuum
Abelian theory (without mzmetic monopole fields) never confines-
This result was anticipat:: by handelstamz on the basis of the

exlstence of the Abelian tulomb gauge-

One might try to argw in a different way that the Green’s func-
tions of the vortex opera::r had to be short ranged in a phase
without massless particles. Take a large curve €, with the surface S

far away from the minimal surface. Consider

< @(x) 30(095) >C / < Vp’(CQS) >

8

1 wp y o= k
l i 8(x) {efsdc'qpf‘@p(y)] >C {5.5)

P

i
L 4

k
where again 8(x) is any gage invariant operator and where x is a
point near the minimal surlace of C but far from C itself. Because
there are no massless pariicles, every Green’s function in 5.5 falls
exponentially for x distarc from S. 1In particular they are vanish-
ingly small when x is on e minimal surface, so that surface clus-
tering is impossible. Fuither, since < €(x) Vp”(CQS) >C is exponen-
tialy small for x far froz 5, and also independent of 5, it is
exponentially small excep: for x near C. This is in direct disagree~
ment with what was shown ivove. The problem must lie in the expan-
sion 5.5: while this expawion is formally correct, the lonyg distance
behavior of the sum is no: the same as that of the individual terms.

This 1s the source of our statement, at the end of the section on
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renormalization, that the expansion in powers of p is not always to

be trusted.

We would like to see the surface-like cluster property emerge
from the earlier graphical expansion. Consider the expectation value

of the Higgs field in the presence of the vortex operator:
$°0) = < g(x) VU(CS) >/ <V 7(C,8) > (5.6)

wnere ¢(x) is the Higgs field, € is a large curve and S is taken, for
convenience, to lie far away from the minimal surface of Cs In 2 3~
surface which is perpendicular to C and which cuts it at two points
we have figure 5. Near the swall loop 1, which is far from C and
from its minimal surface, gauge invariant connected Green’s functions
will vanish and QVS(K) will be position dependent but its values will
lie in the set M of minima of the Higgs potential. For the Abelilan
theory M is the set of comélex nunbers of modulus u, where u is the
vacuun expectation value of the Hipggs field, but the present arguuent

generalizes readily to a non-Abelian theory.

If we have an Abelian theory, we know from 3.18 and 3-19b that
¢Vs(x) will be ucexp{ip®] as we traverse the infinitesimal loop 1 and
© goes frow 0 to 20. On the loop 1, ¢Vs(x) is seen to describe an
element of the homotopy group III(M) identical to the element of ﬁl(cs)
associated with the vortex operator. We may now imagine enlarging
the loop, sliding it off S, taking it to the position of loop 2 and
shrinking it to a point, without ever getting close to ¢ or <o
Because the fields are singular only at §, ¢Vs(x) must be essentially
constant on loop 2: it maps out an element of the trivial honotopy

class. By definition there is no way to continuously deform an
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element of one homotopy class into an element of another while stay-
ing within M. It follows that, somewhere between 1 and 2, ¢Vs(x)
took values outside of M; this must be the case at least within a
tube between ¢ andAE, and therefore on a surface spanning C. This is
precisely the argument by which one shows that when the Higgs field
at spatial infinity in two space dimensions maps out a non-trivial
element of the homotopy group, there must be a "lump", a Nielsen-

]

Olesen vortex , somewhere in space. The tube between ¢ and ¢ is a

Nielsen=0Olesen vortex.

Where ¢Vs(x) does not lie in 1, gauge invariant connected
Green’s functions such as that for the Higgs potential will be non-
vanishing. It follows that the vortex operator in a completely bro-
ken small coupling Higgs phase has surface clustering. This is the
source of the “t looft criterion. One may also check, order by
order, that the Green’s functions of the Wilson loop are short range,
because all fields are massive. @vs(x) is given by all trees whose
trunk 1s a boson propagator. Each individual graph, by the earlier
argument, has short range clustering, but the sum, as given by the
minimun of the effective potential in the presence of the vortex, has

surface clustering.

6. Conclusions

We have dealt mainly with technical aspects of the Abelian vor=-
tex operator. Our two dimensional "Dirac lump", and our solution to
the Dirac veto problem, are probably more amusing than they are use-

ful, at least for the present problem where the methods of Wu and
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Yang can be used. For a field theory of electronms and monopoles, it
may be helpful to use ideas akin to ours, &s the monopole is no
longer classical and the method of writing a monopole field theory as

a sum over monopole paths 1s rather formal.

We have shown that the divergences of looplike composite opera-
tors can be analyzed in a straightforward way by use of the operator
product expansion. We believe that any attempt to obtaln equations
of motion for looplike operators (Wilson loops or vortex operators)
must include a careful treatment of short distance guestions, alonyg
these lines. Also, such questions as the existence of the limit in
Mandelstan’s construction of the dual Wilson loop2 can probably be

analyzed with these methods.

We emphasized the cluster properties of looplike operators
because they provide a more detailed physical picture than simply the
vacuun expectation value. We saw two correct ways (divergence equa-
tion and tree sum) to find the surface-like cluster property in an

Abelian Higzgs phase, and one incorrect way (expansion inm p).
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FOOTHOTE

£1) I would like to thank Professor K. Bardakci for helpful discus-
glons. The work of section 4.1 was done before the appearance of

references 16 and 17.
NOTES ADDED IN PROOF

£2) Products of the form W{C)0O(x) with 0(x) a local operator and

% lying on C arise when one attempts to derive equations of motion

for W(C). The divergénc&s of such products may be easily analyzed

with the methods developed here; they require counterterms having

the form of similar products involving local operators of dimension
less than or equal to that of 0(x).

£3) The result b(xi)%ﬂ may also be derived using (P-invariance

rather than P. If parity and CP are both violated by hard (dimension 4)

interactions, a counterterm of the form ¢, will be needed, but it can

2

still be shown that c¢. is unnecessary. The operator with finite

1
Green's functions is then a vortex operator times a Wilson loop of
charge determined by the magnitude of P and CP violation. This would
suggest that with hard P/CP violation, a theory of Dirac monopoles is
not renormalizeable but a theory of Dirac dyons is.

21,22 shows that when there

f4) Recent work on the roughening transition
is surface clustering the Green's function 5.1 actually spreads out over
a distance from the minimal surface which becomes infinite when the linear

size of the loop C becomes infinite (though the ratio of the spreading

width to the limear size goes to zero). This occurs because the flux tube,

though finite in thickness, fluctuates in position. The discussion
following equation 5.2 is unaltered, as the action is proportional
to at least the area of the minimal surface for every configuration of

the fluctuating tube.
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FIGURE CAPTIONS

AVS

a. The graph for (x). The double line represents the

surface S.

be & typical graph for G{(P,C,S). The curved line is the path P
of the line integral; the straight segments are scalar propaga-

tors.

a. The order e graph for < AP(X) VP’(CQS) >/ < Vpg(C,S) >a
The heavily circled v°s are effective vertices, the lightly cir-

cled v°s indicate effective propagators.
b. An order e3 graph for the same matrix element.

a. The discontinuous graph for < Vp“(CES) wq(cg) >. The single

heavy line represents (%«

be Another graph for the same Green’s function.

c. Another graph, connected to C° by three photons.
Graphs in the expansion of figure 2a.

a. The two graphs with field renormalization divergences.
b. Two of the graphs which have composite divergences.

The Green’s function 5.6, considered in a 3-surface. ¢ and ¢
are the intersections of C with the 3-gsurface; s is the inter=-
section of S with the 3-surface. The function 3.3 maps loop I

into a nontrivial path in M; 4t maps loop 2 into a trivial pathe.
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Figure 3
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